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Abstract—We propose a novel inexpensive embedded capaci-
tive sensor (ECS) for sensing the shape of Continuum Dexterous
Manipulators (CDMs). Our approach addresses some limitations
associated with the prevalent Fiber Bragg Grating (FBG) sensors,
such as temperature sensitivity and high production costs. ECSs
are calibrated using a vision-based system. The calibration of the
ECS is performed by a recurrent neural network that uses the
kinematic data collected from the vision-based system along with
the uncalibrated data from ECSs. We evaluated the performance
on a 3D printed prototype of a cable-driven CDM with multiple
markers along its length. Using data from three ECSs along
the length of the CDM, we computed the angle and position
of its tip with respect to its base and compared the results to
the measurements of the visual-based system. We found a 6.6%
tip position error normalized to the length of the CDM. The
work shows the early feasibility of using ECSs for shape sensing
and feedback control of CDMs and discusses potential future
improvements.

Index Terms—continuum dexterous manipulators, shape esti-
mation, capacitive sensing

I. INTRODUCTION

Continuum dexterous manipulators (CDMs) have gained
significant traction in surgical systems due to their inherent
dexterity and enhanced accessibility, which greatly contribute
to the advancement of minimally invasive surgery techniques
[1]–[3]. However, the inherent compliance and varying dy-
namic environment encountered during the surgery, present
challenges in developing models for intraoperative real-time
control of the CDM motion.

Medical imaging techniques, such as fluoroscopic imaging,
can be utilized to estimate the shape of CDMs during proce-
dures [4]. Fiber Bragg Grating (FBG) sensors are commonly
employed for shape sensing in CDMs due to their compact
size and efficient strain transfer [2], [5]–[8]. However, FBG
sensors exhibit cross-sensitivity to strain and temperature,
necessitating additional temperature compensation when the
environment’s temperature changes [9]. Moreover, FBG sen-
sors require costly and sophisticated interrogators to accurately
monitor the Bragg wavelength’s position [10].

Capacitance sensing is a widely employed method for em-
bedded shape sensing, particularly in the field of soft robotics
[11]–[13]. This sensing technique enables the measurement of
shape without being affected by issues such as occlusion and
coordinate transformation [12]. However, to our knowledge,
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Fig. 1. Fabrication of sensor structures for capacitive shape sensing in CDMs.
(a) The Signal layers serve as primary components for ascertaining both the
direction and degree of bending. (b) Depiction of the relative positions of
copper plates within the sensor, functioning as carriers of signal and ground.
This subfigure illustrates the specific sensor locations where the strips establish
their connections.

the utilization of embedded capacitance sensors for shape
sensing in CDMs has not been extensively explored in the
existing literature.

We propose an ECS design to be later miniaturized and used
for minimally-invasive surgery. The sensor strip, composed
of copper foil encapsulated in polyester films, is embedded
in the walls of the CDM. The ECS senses shape changes
based on the relative area variation between the strips during
bending. This sensor demonstrates reliable performance in
varying temperature environments, addressing the challenges
of temperature fluctuations in orthopedic surgery when the
CDM is used to drill and mill hard tissues [2]. Moreover, the
proposed ECS design is easily replaceable and does not rely
on costly interrogators, making it a practical and inexpensive
solution for CDM shape sensing. The contributions of this
work are as follows:

1) Introducing a novel capacitor strip design for CDM
shape sensing.

2) Developing a vision-based pipeline and implementing an
ECS calibration method utilizing deep learning.

II. DESIGN, FABRICATION, AND CALIBRATION

A. Sensor Design and Fabrication

The capacitance sensor assembly, as depicted in Figure
1(a), consists of five layers: coverfilm, adhesive layer, metal
layer, insulation layer, metal layer, and coverfilm.These layers
are designed to ensure the physical integrity of the sensor
and enable accurate capacitance measurements. The coverfilm
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a) RGB Image b) Joint Angles

c) ECS Stripes

f) Shape Reconstruction

d) Capacitance vs Tip Bending Angle
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Fig. 2. The CDM pose tracking and calibration pipeline: (a) RGB image
captured, with the orientation and ratio calibrated by mapping the four red
points to their respective positions. (b) CDM joint position tracking achieved
using an HSV color filter. (c) Collection of capacitance readings from the
capacitors. (d) Plot showing the relationship between capacitance values and
tip bending angles. The capacitance gap indicates a dependence on previous
CDM states. (e) Structure of the RNN (Recurrent Neural Network) with a
sequence length of 10. (f) Result of shape regeneration using the RNN output
values.

serves as a protective package for the ECS and is made of a
3-mil (0.0762 mm) lamination film. It provides the necessary
tensile force to maintain the integrity of the ECS strips within
the CDM, preventing misreadings caused by irreversible bend-
ing. The copper foil in each stripe serves as the basis of
the ECS, with the capacitors formed between neighboring
copper foils. This allows us to detect the capacitance, which
provides valuable information about the shape and bending of
the CDM. The insulation layer in the ECS strip ensures proper
separation between the capacitors, preventing any interference
or crosstalk between them. The adhesive layer is applied to
enhance the overall fabrication quality and minimize the risk of
ECS malfunction due to broken wires or separated packages.

Three sets of sensor assemblies are positioned at different
locations to eliminate interference, as depicted in Fig. 1(b). As
the CDM bends, the overlayed area of the capacitance surface
undergoes changes. By measuring the differential change in
capacitance between the opposing sides of the CDM, the
direction and magnitude of the bending can be determined.

B. Sensor Calibration and Shape Reconstrction

To achieve CDM shape detection using a camera, we have
devised a system calibration algorithm that addresses the
transformation and scaling issues of the image projection.
This algorithm leverages four calibration points, as depicted
in Figure 2(a), to determine their corresponding positions in
the image frame. By employing a least squares approach, we
minimize the projection error and establish a mapping between
the image frame and the real positions in the horizontal
frame. Furthermore, we apply a ratio compensation technique
to rectify any scaling discrepancies between the image of
the horizontal plane and the bending plane. This allows us
to accurately determine the positions of the markers on the
bending plane, facilitating precise shape sensing of the CDM.

Through the calibration process, we achieved submillimeter
error between the CDM tip and the base portion across the
entire workspace.

Following the completion of the system calibration, we
are able to track the positions of 28 markers, using a Hue
Saturation and Value (HSV) color filter, as demonstrated in Fig
2(b). This approach allows for real-time tracking of the marker
positions, the corresponding capacitor values are also recorded
alongside the positions with corresponding timestamps.

In this study, the CDM is represented as a kinematic
chain, where the configuration of the CDM is described by
a sequence of joint angles that correspond to the angles
between adjacent segments. The joint angles are computed by
determining the intersection of lines connecting neighboring
markers with the y-axis which is along the base of the
CDM. Additionally, the segment lengths are calculated as the
Euclidean distances between the markers. For the purpose of
sensor calibration, we utilize the average segment length as a
kinematic parameter, and the joint angles serve as inputs for
the calibration process. The relationship between the tip angle
and the top capacitor value is displayed in Fig. 2(d).

Due to the presence of the capacitor gap phenomenon
depicted in Fig. 2(d), it is not feasible to describe the mapping
between capacitance and joints angles using linear regression.
To address this, we employed a recurrent neural network
(RNN)-based model to calibrate the sensor, as illustrated in
Fig. 2(e). The RNN model takes into account the temporal
correlation in the data, allowing for improved calibration
performance compared to linear regression methods.

Finally, we developed a Robot Operating System 2 (ROS2)
package to reconstruct the calculated CDM shape in real-time
and visualize it using RViz - a kinematic simulation package.
This integration allows for the representation of the CDMs’
shape, as shown in Fig 2(f).

III. EXPERIMENTS AND RESULTS

To calibrate the developed ECS and evaluate its shape
sensing capabilities, we devised an experimental procedure
comprising of the following steps: system setup and cali-
bration, data collection, ECS calibration, and result analysis.
In this section, we provide a detailed overview of each
step, discussing the methodologies employed and the specific
procedures undertaken to ensure a thorough evaluation and
analysis of the capacitor sensor’s performance.

A. System Setup and Calibration

To evaluate the performance of the capacitor sensor on
CDMs, we integrated the ECS strips into a 3D-printed proto-
type, as depicted in Figure 1. The CDM prototype has a total
length of 225.0 mm, with a bendable part length of 101.9 mm.
In order to maintain consistent and accurate measurements,
the CDM is securely fixed to a horizontal flat plane using a
3D-printed fixture. This ensures that the bending plane of the
CDM aligns parallel to the horizontal plane, enabling reliable
shape sensing experiments.
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Fig. 3. Training and validation error plotted against epochs.

CDM shape is captured using a Realsense D435i camera,
securely fixed with a camera holder. System calibration and
ratio compensation methods, discussed in Section II.B, enable
precise determination of the positions of CDM points on the
bending plane from the captured images.

B. Data Collection

After completing the system calibration, the positions of
the CDM joints can be accurately captured on the bending
plane. The capacitance values, obtained through the AD7747
capacitance-to-digital converter and Arduino Mega 2560, are
processed in real-time. This integrated system enables simul-
taneous data collection of the joint positions and capacitance.

The CDM is bent using its embedded cables. The maximum
bending angle between the CDM’s tip and its base is approx-
imately 68◦, and the bending angle and duration of each bend
vary. Throughout the bending process, the capacitor values
and joint positions are recorded and stored in CSV files. A
total of 1314 data points have been collected in the database,
providing a comprehensive dataset for analysis and evaluation.

C. Sensor Calibration Model and Results

Due to the observed correlation in the acquired data, we
investigated the use of RNN as a suitable model for sensor
calibration. In addition to RNN, we also employed two other
regression models for comparison: linear regression and linear
regression with a kernel (measuring the difference in capaci-
tance between two consecutive states).

The evaluation criteria consist of four error metrics: average
angle error, average position error, tip angle error, and tip
position error. The average angle error represents the mean
discrepancy between the predicted and measured joint angles.
Similarly, the average position error quantifies the mean dif-
ference between the predicted and measured joint positions.
The tip angle error measures the mean error between the
predicted and measured bending angles at the CDM tip, while
the tip position error assesses the mean difference between
the predicted and measured positions of the CDM tip. Angle
errors are obtained directly from the regression model, while

position errors are calculated using forward kinematics based
on a kinematics model established using average distance data
from the vision module.

The RNN model was trained using a learning rate of
1.0 × 10−3 and a batch size of 32. The architecture of the
model includes two recurrent layers, with 3 nodes in the input
layer, 128 nodes in the hidden layer, and 28 nodes in the
output layer. The sequence length for input data is set to 10.
The optimization process utilizes the Adam optimizer, and the
training is performed for 200 epochs. The mean absolute error
(MAE) is used as the loss function to evaluate the predicted
angles of the joints. Fig. 3 displays the training and validation
errors, indicating that the model is effectively trained and
achieves convergence within 200 epochs.

The trained model is tested on the testing dataset to calculate
the predicted angles. The error between the predicted and
measured angles is computed, and the predicted angles are
used in the kinematics model to determine the position error
for each joint. The results are summarized in Table 1.

TABLE I
CALIBRATION MODEL COMPARISON

Error Linear Regression Kernel Regression RNN

avg. Angle (degree) 6.0 5.1 3.9
avg. Position (mm) 3.4 2.8 2.2
Tip Angle (degree) 11.1 9.0 7.4
Tip Position (mm) 9.6 7.8 6.7

The results presented in Table 1 demonstrate that the RNN
model achieved a lower percentage error in both tip angle
(33.33%) and tip position (30.21%) compared to the linear re-
gression model. This indicates the superior performance of the
RNN model in capturing the time-series properties of ECS and
highlights its effectiveness for accurate sensor calibration. The
improvement observed in the linear regression model with a
kernel further validates the importance of considering the time-
series nature of the sensor data. These findings emphasize the
suitability of RNNs for achieving enhanced performance and
accurate calibration in capacitor shape sensing applications.

IV. CONCLUSION

This work demonstrates the feasibility of using the ca-
pacitive sensor assembly for shape determination of CDMs.
Through a vision-based sensor calibration pipeline, we
achieved a shape reconstruction model with a tip distance
error of 6.7 mm and a tip angle error of 7.4◦. However, when
normalized to the length of the CDM, the resulting 6.5% error
remains higher than the reported tip position error estimations
for embedded FBG sensors [14], [15]. Future optimization of
the ECS design may lead to comparable CDM tip position
errors as those achieved with embedded FBG sensors.

We also intend to miniaturize the capacitor strips and
integrate them into the CDMs with a reduced outer diameter
of 6 mm. Exploring the use of liquid metal in capacitor or
resistance strips holds promise for further advancements in
this area.
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